

An open source user space fast path TCP/IP stack

What is Our Intention with OpenFastPath (OFP)?

To enable efficient IP communication

Essential in practically all networking use-cases, including NFV

To enable efficient system design

• The IP stack runs close to the underlying hardware and can leverage hardware features

To lower the barriers to build network applications in a multivendor environment

ODP and DPDK support offers application portability across hardware architectures

To reduce development costs through Open Source business model

Enables companies to focus investments on differentiating features

IP fast path incubation project between Nokia, Enea and ARM

Developers and supporting staff active from all three companies

Organized as an Open source project

- Democratic governance model
- Using open source software
- BSD license
- Source code on GitHub
- Mailing list, shared Google docs, weekly calls, Freenode chat etc

Leverages ODP and DPDK to access hardware from user space

- Maximizes portability and software reuse
- Native DPDK is evaluated

Linux user space IP fast path implementation

- Maximizes throughput and scalability by minimizing Linux overhead
- Leverages Linux for slowpath and route/ARP table updates

>> Features implemented

Fast path protocols processing:

- Layer 4: UDP termination, TCP termination, ICMP protocol
- Layer 3
 - ARP/NDP
 - IPv4 and IPv6 forwarding and routing
 - IPv4 fragmentation and reassembly
 - VRF for IPv4
 - IGMP and multicast
- Layer 2: Ethernet, VLAN, VxLAN
- GRE Tunneling

Routes and MACs are in sync with Linux through Netlink

Integration with Linux Slow path IP stack through TAP interface

Command line interface

- Packet dumping and other debugging
- Statistics, ARP, routes, and interface printing
- Configuration of routes and interfaces with VRF support

OFP IP and ICMP implementations passing Ixia conformance tests

IP and UDP implementations has been optimized for performance, TCP implementation is functional but not performance optimized

Project roadmap candidates

IPsec, Packet filtering, OFP application IPC, OFP on RTOS, SCTP, GTP-U

>>OpenFastPath Source code

New open-source code

Developed by partners during the incubation stage

UDP, TCP, ICMP code was ported from libuinet (User space FreeBSD port)

- Non-blocking event based socket API
- Modular multithreaded design focused on performance and scalability
- Tightly coupled to application, linked in as a library
- Maintainability Tracks evolution of FreeBSD

High performance and scalable implementation for MAC and Route tables

Lockless synchronization based on epoch reclamation

>>

OpenFastPath system components

OpenFastPath System View

OpenFastPath multicore System View User Termination or User Termination or User Termination or • • • • Forwarding A Forwarding *X* Forwarding B One ODP Socket callback Socket callback Socket callback /Hook API /Hook API /Hook API thread context Host OS (Linux) User OpenFastPath (OFP) Conf (SMP multicore library) Code Init API Netlink Route tables Ingress API Ingress API Ingress API **PKTIO PKTIO PKTIO** Slow TAP path Dispatcher Dispatcher Dispatcher ODP API **ODP SW** DPDK **Application OFP** Core 0 Core 2 Core 1 Core N **ODP API** ODP/DPDK FW/HW Linux ODP **NICs** HW

> Egress Packet Processing

>Optimized OpenFastPath socket APIs

New zero-copy APIs optimized for single thread run-to-completion environments

- UDP
 - Send: Optimized send function with ODP packet container (odp packet t)
 - Receive: A function callback can be registered to read on a socket. Receives ODP packet container and socket handle
- TCP
 - Accept event: A function callback can be registered for TCP accept event. Receives socket handle.
 - Receive: A function callback can be registered to read on socket. Receives ODP packet container and a socket handle

Standard BSD Socket interface

For compatibility with legacy applications

>Other OpenFastPath user application APIs

- Initiation of Open Fast Path
- Interface configuration
- Route and MAC table access
- Packet Ingress and Egress processing
- Hooks for IP local, IP forwarding and GRE
- Timer callbacks
- Statistics
- Packet capture

>> Why should someone use OpenFastPath?

Open source project

Enables companies to focus investments on differentiating features

Highly optimized and scalable solution

Non-blocking event based API focused on performance and scalability

Portable high performance solution supporting multiple HW and SW platforms

Functionality verified on ARM, MIPS and x86 HW with native ODP, ODP-DPDK, ODP-NETMAP support

Reliable

OFP IP and ICMP implementations passing Ixia conformance test

User space implementation

Simplifies maintenance and maximizes throughput and scalability by minimizing Linux kernel dependency

>> Thank You

For additional information, please visit www.openfastpath.org

