
An open source user space fast path TCP/IP stack

What is Our Intention with OpenFastPath (OFP)?

To enable efficient IP communication

 Essential in practically all networking use-cases, including NFV

To enable efficient system design

 The IP stack runs close to the underlying hardware and can leverage hardware features

To lower the barriers to build network applications in a multivendor environment

 ODP and DPDK support offers application portability across hardware architectures

To reduce development costs through Open Source business model

 Enables companies to focus investments on differentiating features

What is OpenFastPath?

IP fast path incubation project between Nokia, Enea and ARM
 Developers and supporting staff active from all three companies

Organized as an Open source project

 Democratic governance model

 Using open source software
 BSD license

 Source code on GitHub

 Mailing list, shared Google docs, weekly calls, Freenode chat etc

Leverages ODP and DPDK to access hardware from user space
 Maximizes portability and software reuse

 Native DPDK is evaluated

Linux user space IP fast path implementation

 Maximizes throughput and scalability by minimizing Linux overhead
 Leverages Linux for slowpath and route/ARP table updates

Features implemented

Fast path protocols processing:

 Layer 4: UDP termination, TCP termination, ICMP protocol

 Layer 3

 ARP/NDP

 IPv4 and IPv6 forwarding and routing

 IPv4 fragmentation and reassembly

 VRF for IPv4

 IGMP and multicast

 Layer 2: Ethernet, VLAN, VxLAN

 GRE Tunneling

Routes and MACs are in sync with Linux through Netlink

Integration with Linux Slow path IP stack through TAP interface

Command line interface

 Packet dumping and other debugging

 Statistics, ARP, routes, and interface printing

 Configuration of routes and interfaces with VRF support

OFP IP and ICMP implementations passing Ixia conformance tests

IP and UDP implementations has been optimized for performance, TCP implementation is functional but not performance optimized

Project roadmap candidates

 IPsec, Packet filtering, OFP application IPC, OFP on RTOS, SCTP, GTP-U

OpenFastPath Source code

New open-source code

 Developed by partners during the incubation stage

UDP, TCP, ICMP code was ported from libuinet (User space FreeBSD port)

 Non-blocking event based socket API

 Modular multithreaded design focused on performance and scalability

 Tightly coupled to application, linked in as a library

 Maintainability – Tracks evolution of FreeBSD

High performance and scalable implementation for MAC and Route tables

 Lockless synchronization based on epoch reclamation

NICs

APIInterface

configuration

ODP
Application

CLI

Packet

processing
API

Routes, ARP
IPv4

IPv6

MAC

API

Configuration

Packets

Information

Linux

kernel
TAP

Netlink

API

API

ODP

Linux

ODP API

OFP

HW

Application

OpenFastPath system components
DPDK

Ingress API

User/Default

Dispatcher

OpenFastPath System View

Packets

Ctrl

HW / NICs

ODP API

Host OS (Linux)

ODP/DPDK FW/HW

ODP SW

TA
P

N
e
tlin

k

Socket Hook APISocket Egress API

User Termination or Forwarding

In
it

A
P

I

OpenFastPath (OFP)

PKTIO

Interface

Management

User

Conf

Code

pkt_cnt = odp_pktio_recv(pktio,

pkt_tbl, OFP_PKT_BURST_SIZE);

or
buf = odp_schedule(&queue,

ODP_SCHED_WAIT);

ODP

Linux

ODP API

OFP

HW

ApplicationSlow

path

Route

tables

DPDK

OpenFastPath multicore System View

NICs

Dispatcher

1

Ingress API

Socket callback

/Hook API

User Termination or

Forwarding A

In
it

A
P

I

PKTIO

Host OS (Linux)

ODP/DPDK FW/HW

Core 1Core 0 Core NCore 2

Dispatcher

2

Ingress API

User Termination or

Forwarding B

OpenFastPath (OFP)

(SMP multicore library)

N
e
tlin

k
TA

P

PKTIO

Dispatcher

N

Ingress API

User Termination or

Forwarding X

PKTIO

User

Conf

Code

….

….

ODP API

ODP SW

….

ODP

Linux

ODP API

OFP

HW

Application

Slow

path

Route

tables

One ODP

thread

context

Socket callback

/Hook API

Socket callback

/Hook API

DPDK

Ingress Packet Processing

Ethernet

VLAN

IPv4/v6

ARP

IPv4/v6 local

hook API

IPv4 GRE

IPv4/v6

routing

IPv4/v6 output

IPv4/v6 forward

hook API

Transport(L4)

classifier

UDP input

TCP input

ICMP

Send ARP

request

Socket API

Update MAC

table Pre-classified

L2

L3

L4

User API

Packets

Information

IPv4

ReassemblyIngress API

Fallback to

slowpath for

unknown traffic

GRE hook API

IP, UDP, TCP, …

classified by

HW

VXLAN

IGMP

Loopback to

VXLAN

NDP

Egress Packet Processing

Socket/Egress

API
IPv4 output

UDP output

TCP output

ICMP error

IPv6 output

IPv4 GRE

tunneling

VXLAN

IPv4

Fragmentation

Pre-classified

L2

L3

L4

User API

Packets

Information

Ethernet

VLAN

Optimized OpenFastPath socket APIs

New zero-copy APIs optimized for single thread run-to-completion environments

 UDP

 Send: Optimized send function with ODP packet container (odp_packet_t)

 Receive: A function callback can be registered to read on a socket. Receives ODP packet
container and socket handle

 TCP

 Accept event: A function callback can be registered for TCP accept event. Receives socket
handle.

 Receive: A function callback can be registered to read on socket. Receives ODP packet
container and a socket handle

Standard BSD Socket interface

 For compatibility with legacy applications

Other OpenFastPath user application APIs

 Initiation of Open Fast Path

 Interface configuration

 Route and MAC table access

 Packet Ingress and Egress processing

 Hooks for IP local, IP forwarding and GRE

 Timer callbacks

 Statistics

 Packet capture

Why should someone use OpenFastPath?

Open source project

 Enables companies to focus investments on differentiating features

Highly optimized and scalable solution
 Non-blocking event based API focused on performance and scalability

Portable high performance solution supporting multiple HW and SW platforms

 Functionality verified on ARM, MIPS and x86 HW with native ODP, ODP-DPDK, ODP-NETMAP support

Reliable
 OFP IP and ICMP implementations passing Ixia conformance test

User space implementation

 Simplifies maintenance and maximizes throughput and scalability by minimizing Linux kernel
dependency

Thank You
F o r a d d i t i o n a l i n f o r m a t i o n , p l e a s e v i s i t

w w w. o p e n f a s t p a t h . o r g

http://www.openfastpath.org/

